

PFS Corporation

An Employee-Owned Company

Western Region

3637 Motor Avenue Suite 380 Los Angeles, CA 90034

4 April 13, 2010

Phone: 310.559.7287 Fax: 310.559.1368

Website

www.pfscorporation.com

J. Robert Nelson, PE Senior Vice President melson@pfscorporation.com

Headquarters Cottage Grove, WI 608.839.1013

Regional Offices

Northeast

Bloomsburg, PA 570.784.8396

Southcentral Plano, TX 972.424.2740

Western

Los Angeles, CA 310.559.7287

Midwest

Cottage Grove, WI 608.839.1013

Southeast

Raleigh, NC 919.845.8450

Sales Office

Mentone, AL 256.634.4071

To Whom It May Concern:

This letter is to certify that the MLT LVL manufacturing plant located in Tver Region, Torzhok, Staritskaya Str., 96-a, Russia conforms to PFS Corporation's Prefabricated Component Program for Engineered Wood Products. The 1-3/4" thick 2.0E & 1.8E grades of LVL were tested in accordance with ASTM D5456 Standard Specification for Evaluation of Structural Composite Lumber Products.

The production of the test samples were witnessed by PFS and the testing was conducted by TTS Inc. in Edmonton, AB, Canada. TTS Inc. is an IAS Accredited laboratory and the test results are presented in their report dated February 19, 2009.

The PFS program consists of a certification audit, monthly unannounced inspections by a PFS representative and an in-depth audit once a year by a PFS engineer. During the inspections, the daily quality control testing required in the approved Quality Control Manual is witnessed. The results of the QC testing are forwarded to me on a monthly basis.

The Table 1 Allowable Design Stresses and Table 2 Fastener Details are attached. If you have any questions or require any additional information, please let me know.

Sincerely,

/J. Robert Nelson, P.E. Senior Vice President

TABLE 1: ALLOWABLE DESIGN STRESS FOR UltralamTM LVL (psi)^{1,2}

PROPERTY	2.0E	1.8E		
Modulus of Elasticity (MOE)	Joist	2,000,000	1,800,000	
IMOdulus of Elasticity (MOE)	Plank	2,000,000	1,800,000	
Flexural stress-MOR (F _b) ^{3,5}	Joist	2,650	2,200	
l lexural stress-WOR (7 b)	Plank	3,300	2,400	
Tensile strength (F _t) ⁴		2,450	1,550	
Longitudinal Shear (F _v)	Joist	200	200	
Longitudinal Shear (FV)	Plank	150	150	
Compression Parallel (F _c)		2,600	2,350	
Compression Perpendicular (F _c)	Joist	850	850	

For SI: 1 inch=25.4 mm, 1 psi = 6.89 kPa

- 1) The allowable design stress provided in Table 1 apply to protected, dry service conditions
- 2) The tabulated allowable design stresses above are permitted to be adjusted for duration of load as provided in the appropriate code sections
- 3) The tabulated flexural stresses above are permitted to be increased by 4 percent for repetitive member stresses as provided in the applicable code for solid sawn lumber
- 4) The tabulated tensile stress is based on gage length (L) of 2 feet. For other gage lengths, the tabulated tensile stress is adjusted by multiplying F_t by $(2/L)^{0.08}$ where L is measured in feet. For lengths less than 2 feet use the tabulated tensile stress unadjusted.
- 5) The tabulated flexural stresses are based on load of normal duration and a reference depth of 12 inches. For other depths, the tabulated flexural stresses are adjusted by a depth size factor adjustment of (12/d)^{1/7} as shown in the table below.

DEPTH (in)	3.5	5.5	7.25	9.5	12	14	16	18	24
1.8E	1.20	1.12	1.08	1.04	1.00	0.98	0.96	0.94	0.90
2.0E	1.20	1.12	1.08	1.04	1.00	0.98	0.96	0.94	0.90

TABLE 2: Ultralam[™] LVL FASTNER DETAILS

TEST	NEAREST SPP COMBINATION RECOMMENDED			
WITHDRAWAL-8d NAIL INSTALLED IN Y DIR. (FACE)	Withdrawal	Red Maple (0.58)		
WITHDRAWAL-8d NAIL INSTALLED IN X DIR. (EDGE)	Withdrawal	Red Maple (0.58)		
BEARING-10d NAIL INSTALLED IN Y-DIRECTION	Loaded in L-Dir.	Western White Pine(0.40)		
BEARING-100 NAIL INSTALLED IN 1-DIRECTION	Loaded in X-Dir.			
BEARING-10d NAIL INSTALLED IN X-DIRECTION	Loaded in L-Dir.			
BEAKING-100 NAIL INSTALLED IN X-DIKECTION	Loaded in Y-Dir.			
BEARING-Loaded in L-Dir. (Parallel)	1/2" BOLT	Pod Monio (0.59)		
Carallel	3/4" BOLT	Red Maple (0.58)		
BEARING-Loaded in X-Dir. (Perpendicular)	1/2" BOLT	Dod Ding (0.44)		
DEANING-Loaded in X-Dir. (Perpendicular)	3/4" BOLT	Red Pine (0.44)		

Allowable values for nails noted in the applicable code are applicable to the UltralamTM LVL for conditions and species noted in the table.